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Abstract 

The scientific community has long benefited from the opportunities provided by data reuse. Recognizing the need to identify the chal- 
lenges and bottlenecks to reuse in the agricultural resear c h community and propose solutions for them, the data reuse working group 

was started within the AgBioData consortium fr amew ork. Here , w e identify the limitations of data standards, metadata deficiencies, 
data inter opera bility, data o wnership , data av aila bility, user skill lev el, r esource av aila bility, and equity issues, with a specific focus 
on agricultural genomics resear c h. We propose possible solutions stakeholders could implement to mitigate and overcome these 
challenges and provide an optimistic perspective on the future of genomics and transcriptomics data reuse. 

Ke yw ords: data reuse, metadata, big data, genomics, transcriptomics, a gricultur e, data standards, FAIR 

 

 

p  

m  

fi  

s  

b  

b
 

t  

b  

t  

a
c
t  

c  

d
 

f  

w  

e  

u  

w  

r  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae106/7953194 by guest on 21 January 2025
Bac kgr ound 

The value of data reuse is one of the founding postulates behind 

the Open Science movement yet remains an underexamined as- 
pect of r esearc hers’ experience of open data [ 1, 2 ]. Historicall y,
global sharing of biological datasets became tec hnicall y possible 
with the rise in access to the World Wide Web, and data reuse 
transitioned into an attractive option for researchers through ben- 
efits that came with an increasing number of available datasets 
and reuse applications, as reviewed by Sielemann et al. [ 5 ] In the 
past 3 decades, a gricultur al r esearc hers hav e also adopted data 
sharing and reusing practices alongside the rest of the genomics 
community due to the benefits outweighing the reluctance some 
may feel in sharing valuable data. Genomics data are particularly 
amenable to reuse, as many different types of structural and func- 
tional data are provided as DNA sequences, and many analytical 
tools have been developed to analyze and integrate genomics data 
types [ 3 ]. With constantly emerging sequence-based technologies,
the language of nucleotides has become incr easingl y ubiquitous 
and useful. Alternatives for assays that traditionally have gener- 
ated difficult-to-share data types, such as flow cytometry fluores- 
cence, yield easy-to-share sequence-based data types to dir ectl y 
integrate RNA and protein modalities [ 4 ]. Ho w ever, no dataset is 
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erfect, and data producers can only strive to satisfy the require-
ents for its initial use and r euse. Some r esearc hers hav e identi-

ed the risks and challenges associated with data reuse in the life
ciences [ 5 , 6 ], whic h informs a gricultur al data mana gement [ 7 ],
ut a detailed assessment of the reuse issue in this area has not
een conducted yet. 

Recentl y, a r eport on the status of open data called atten-
ion to the importance of data availability in reuse [ 1 ]; ho w ever,
arriers remain in making data amenable for reuse. Our objec-
ive in this perspective is to highlight concerns in data reuse
cross the agricultural genomics community to identify major 
hallenges and viable solutions. We also provide our perspec- 
ives on best practices for sharing data to make them more ac-
essible and reusable, as well as how to r euse publicl y av ailable
ata. 

We define data reuse as the practice of utilizing existing data
or a novel scientific purpose beyond its original scope. Although
e recognize that this definition would include the use of ref-
rence genome sequences, we find that their reuse comes with
nique challenges beyond the scope of this article . Furthermore ,
hile the reuse of one’s own data fits under our definition, the
 ecommendations and perspectiv es set out in this article a ppl y
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Figure 1: Biological data types are diverse, and their reuse comes with 
unique challenges . T he barriers and limitations of data reuse discussed 
here include data quality and standards; missing metadata; issues of 
formatting and inter oper ability; lac k of data av ailability, ownership, and 
intellectual property; and access to resources and skills. 
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rimarily to data reuse by researchers other than the data pro-
ucer’s group. 

While types of data in a gricultur al r esearc h ar e div erse and go
eyond sequence-based datasets, the sequencing community har-
ors a long-standing tradition of data sharing. A major advantage
f genomics data for a gricultur e is that most of such data has a
ommon sequence format and ontology, allowing the reuse and
uning of tools de v eloped in the well-funded biomedical sphere.
euse in genomics r esearc h is lar gel y facilitated by the Interna-
ional Nucleotide Sequence Database Collaboration (INSDC) [ 8 ].
he INSDC consists of the National Center for Biotechnology In-
ormation (NCBI), the European Bioinformatics Institute (EMBL-
BI), and the DNA Data Bank of Japan (DDBJ), which collectively
upport the Sequence Read Arc hiv e (SRA) and the European Nu-
leotide Arc hiv e (ENA). Additionall y, the China National Center
or Bioinformation’s (CNCB’s) National Genomics Data Center and
ts Genome Sequence Arc hiv e also support the international ge-
omics community [ 9 ]. Due to its predominance, we will focus on
he reuse of sequencing data in this article while acknowledging
he importance of other data types and emer ging anal ysis tec h-
ologies in the reuse research arena. 

Reusing existing data brings significant benefits for scientific
 esearc h, suc h as saving time and cost without generating new
atasets, enabling meta-analyses and interdisciplinary research
y combining data fr om m ultiple studies, or ne w discov eries by
xploring novel hypotheses through integrating data from differ-
nt sources or using innov ativ e anal ytical tec hniques. Mor e and
ore exciting publications are being produced that highlight the

alue of data reuse, both in the animal and plant side of agricul-
ur all y important r esearc h [ 10–17 ]. Still, man y datasets ar e not
eusable , or scientists ma y feel they do not trust or do not want
o use the data [ 18 ]. Se v er al r e vie w articles hav e discussed the
pportunities and challenges of data reuse [ 5 , 19–22 ], the latter
ighlighted in Fig. 1 . 

Principles of Findability , Accessibility , Inter oper ability, and
eusability (FAIR) are essential to enable successful sharing and
euse of datasets in the “Big Data” world [ 23 ]. The science commu-
ity has also a gr eed to uphold data-sharing practices that enable
ata reuse through accords and requirements that promote it [ 24–
8 ]. Recognizing the value of reusable datasets and the ubiquity
f FAIR principles might lead one to belie v e they ar e univ ersall y
ccepted and applied. Ho w ever, as any data stakeholder can tes-
ify, no dataset is without flaws [6], and a multitude of problems
an present themselves to a potential reuser. 

Once initial challenges to sharing are o vercome , the reuse of
xisting datasets has n umerous ad v anta ges [ 5 ]. Designing experi-
ents , collecting samples , and generating data usually involve ex-
ensive time, effort, and funding. Retrieving datasets from a repos-
tory and reusing them speeds up the research as the analysis
an be started immediately. Biologists can generate new hypothe-
es to inform their experiments or analyze existing data for pre-
iminary results for emerging research proposals. Alternatively,
hey may analyze public datasets as additional evidence to test
ypotheses in their studies . T hr ough the r euse of datasets fr om
ublic domains, it is possible to investigate massive datasets for
ata-driv en discov ery that would not be viable to generate as part
f an individual study or explore datasets of species that would
ot otherwise be accessible. Examples include datasets that were
ompiled ov er m ultiple years and r epr esent a substantial number
f species in a certain taxonomic group (e.g., Earth BioGenome
roject [ 29 ] and Vertebrate Genomes Project [ 30 ]). Finally, reused
atasets enhance the equity of science as they ar e av ailable with-
ut substantial costs and allow anyone with sufficient computa-
ional resources to benefit from cost-effective data sharing, con-
ributing to the inclusion of earl y-car eer and underr epr esented
cientists [ 5 ]. Bioinformatic software developers can rely on pub-
icl y av ailable datasets for their benc hmarking studies, making it
ossible to e v aluate the performance of novel bioinformatic tools
ased on real datasets. Biologists can perform analyses to gen-
rate hypotheses to inform their experiments or include public
atasets as additional evidence in their studies. As demonstrated

n the a gricultur al field by the CattleGTEx atlas [ 31 ], the po w er of
ata reuse is growing with emerging technologies and the integra-
ion of enormous amounts of data. This includes harnessing high-
uality datasets for analysis using machine learning and cloud
omputing, for example, the anal ysis of ov er 3,000 rice genomes
y DeepVariant [ 32 ], as well as using real datasets as quality control
or synthetic and artificial intelligence–generated datasets . T he
enefits of shared infrastructure and avoidance of resource multi-
licity, as embodied in National Science Foundation’s (NSF’s) Syn-
hesis Centers [ 33 ], enable pr oductiv e and efficient investigations
nto new questions using “old” data, a desirable future for agricul-
ur al r esearc h. 

A unifying objectiv e acr oss biology is understanding the link
rom genome to phenotype (G2P) to move to w ar d pr edictiv e biol-
gy; reuse of existing datasets will play an important role in this
r ocess. G2P initiativ es both depend on and act as a test of exist-

ng data reuse standards and infr astructur e . In this wa y, G2P will
lso identify where deficiencies exist in data r euse r esources. Dif-
er ent funding or ganizations fund these long-term goals through
equests for applications (RFAs). For example, the Genome to Phe-
ome Blueprint [ 34 ] discusses the importance of data reuse for
nimal genetics as a 10-y ear resear ch priority as identified by re-
earchers at the US Department of Agriculture (USDA), also re-
ected in their Agricultural Genomes to Phenomes Initiative [ 35–
7 ], while the NSF runs the Understanding the Rules of Life pro-
ram [ 38 ]. These RFAs all seek ways to impr ov e data reuse as
t is belie v ed that integration of data across diverse and expan-
ive datatypes is needed to identify novel phenomena regarding
enome function. Tuggle et al. [ 35 , 36 ] describe the shared efforts
f the animal and plant genomics communities to de v elop syn-
rgies and leverage strengths to advance genome-to-phenome re-
earch to make scientific advancements that will accelerate appli-
ations in a gricultur e to help feed a growing world under a variety
f c hallenges. Compar ativ e and e volutionary biology studies [ 29 ,
0 , 39–42 ] are also important initiatives whose data will need to be
menable to integration and reuse to help in these efforts. While
his perspective focuses on sequence-based data, it is important
o acknowledge the issues facing phenotypic data reuse, partic-
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F igure 2: Workflo w chart depicting potential pitfalls pr e v enting data fr om being r eused. Bolded lines follow the minimum number of steps/questions a 
potential reuser needs to consider. Dashed red lines denote steps that lead to a dataset not being reused due to circumstances that do not have to do 
with the qualities of the dataset itself. Green and red lines lead to outcomes of data reuse after a critical question in dataset assessment is answered 
yes or no, r espectiv el y. The w orkflo w is divided into 2 parts (blue line) based on the FAIR principles of a dataset being findable and accessible, while 
also inter oper able and r eusable. A, B, C, and D denote major decisions or w orkflo w div er gence points. 
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ularly the prevalent ad hoc formats, lack of archives for storing 
and accessing data, and inability to share phenotype and geno- 
type data together (due to a gr eements with industry or lack of in- 
fr astructur e). For G2P initiativ es to be successful, sequence-based 

and phenotype datasets need to be combined, overcoming their 
r espectiv e barriers to reuse and challenges of integration. 

To assess the data reuse needs and obstacles that this com- 
munity faces, our working group explored the challenges associ- 
ated with data reuse (and their potential solutions) through per- 
sonal testimonies and discussions within the AgBioData consor- 
tium’s Data Reuse Working Group (DRWG), as well as a r e vie w 

of pertinent liter atur e . T he DRWG r epr esents a div erse gr oup of 
r esearc hers with v aried inter ests in species and scientific appli- 
cations of data within the domain of a gricultur e . T he AgBioData 
Consortium [ 43 ] is a group of genomics , genetics , and breeding 
databases and partners working to consolidate data standards 
and best practices [ 44–46 ]. The issues and opportunities presented 

her e wer e gener ated as part of r egular meetings, confer ence pr e- 
sentations, and workshops held as part of a data reuse project 
funded by the USDA AG2PI [ 37 ]. 

Barriers to Data Reuse and 

Recommendations to Overcome Them 

Consider a potential data reuser in agricultural research on their 
path to a dataset, as depicted in Fig. 2 . They are seeking data from 

an experiment they learned about at a conference and can locate 
the paper in which the dataset was originally used. Sometimes 
hey need to email the corresponding author to overcome the bro-
en link to the datasets, and they e v entuall y find the dataset in
n online repository (if the data are not in local stor a ge instead)
Fig. 1 A). The dataset itself might be of unknown or poor qual-
ty, fr om undisclosed pr ov enance, without pr oper documentation,
r contain incomplete or e v en incorr ect metadata. All these fac-
ors can generate confusion in the comprehension of the data and

ake their reuse challenging. Our reuser must assess whether 
heir subjectiv e r equir ements of “quality” ar e met befor e decid-
ng to reuse the dataset (Fig. 2 B). Data ownership rights must
e c hec ked and can be difficult to adher e to with older, miss-

ng, or ambiguous licenses . T he next pr oblem the r euser might
ncounter is the format of the dataset and if it can be corr ectl y
nd successfull y interc hanged into a configur ation their down-
tr eam anal ysis supports, whic h might depend on their skill le v el
Fig. 2 C). If they are attempting to retrieve large datasets from a
tud y, the y might not have access to sufficient computational re-
ources to store the raw datasets or run the analysis (Fig. 2 D). The
ntermediate r esults pr oduced in the original study, which could
artiall y r emedy the stor a ge pr oblem, ma y not be a vailable on the
epository. It is also likely that intermediate results were produced
ased on an outdated version of the r efer ence genome sequence
r its annotation. Furthermore, the hopeful reuser could be a stu-
ent, who seeks counsel from their adviser but is informed that
he experiment (or public data in general) is untrustworthy, or un-
uitable, because of ethics or proprietary constraints. For reuse of
 dataset to be successful, these issues must be o vercome . T he
r e v alence of these problems can vary depending on the data
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ype, prominence of the original study, the re pository the y are
n, and user skills. Ho w e v er, most stakeholders ac knowledge that
hese issues remain problematic [ 18 ], including in agricultural re-
earch. 

ata quality standards as a solution 

o dataset is perfect [ 5 , 6 ], but that does not mean it is not suit-
ble for reuse. As data are made publicly available regardless of
he quality metrics, data quality assessment and standardization
re important considerations [ 6 ] (Fig. 2 B). Statisticians are well
ware of this issue [ 47 ], which is particularly problematic in the
ife sciences likely due to the complexity of biological systems,
umber of variables, and scale of experiments. The difficulty in
btaining and understanding the context surrounding the avail-
ble data has been identified as a major obstacle to reuse in syn-
hetic biology [ 48 ] where interdisciplinarity is one of the defining
eatures of the field. We can extr a polate similar issues to agricul-
ur al r esearc h, whic h often involv es cr oss-disciplinary collabor a-
ion that combines diverse (meta)data types requiring integration
nd analysis. 

To assess if and how a publicly available dataset can be used
n analyses beyond its original purpose, a decision must be made
bout whether it is suitable for reuse. In a sequence-based con-
ext, data suitability can mean a variety of dataset properties, in-
luding cov er a ge, depth, technical and biological replication, tis-
ue type and sample collection method, extraction method and
ibr ary pr epar ation, and other criteria. Further, sequencing tech-
ology, platform, chemistry kits used, flowcell version, and re-

ated information must be considered as is required by base-
allers for conversion into the sequence. All these technologies
re also continuously under fast-paced development. With this in
ind, whether a dataset is of sufficient quality and suitable to

e reused is a difficult and lar gel y subjectiv e decision [ 49 ] and
 aries between a pplications. While ther e ar e some data type–
pecific standards available (e.g., Genomic Data Commons [ 50 ]), their
cope is limited. Agricultur al r esearc h is often multidisciplinary,
as complex experimental designs, and spans many nonmodel
pecies, whic h makes a ppl ying an y univ ersal standard v ery diffi-
ult. 

Unified experimental protocols or bioinformatic pipelines for
ommon data types and organisms are rare . T his is not a problem
n and of itself at the le v el of data production, although an off-the-
helf pipeline could streamline the process and provide bench-
arking for w orkflo w de v elopment. The lac k of standard pr oto-

ols and pipelines is problematic when it comes to data reuse.
ot only can it be difficult to obtain the exact experimental pro-

ocol used (e.g., discussions of data reuse often result in anec-
otes of lost protocols with unanswered emails and/or students
ho graduated), but meta-analyses are also hindered by a lack
f standardization. Sharing experimental designs and protocols
ogether with produced datasets, which greatly benefits reuse, is
 challenge that the international data standards r ar el y addr ess.
xamples of minimum information standards being implemented
y necessity include the Minimum Information About a Microar-
ay Experiment (MIAME) and Minimum Information about a Se-
uencing Experiment (MINSEQE) [ 51 ]. 

Further, an important question that needs to be considered in
he field is whether our experiments should be designed with fu-
ure data reuse in mind. For example, while for the original data
r oducer, one biological r eplicate ma y ha ve been sufficient for the
urposes of gene prediction, a statistically robust meta-analysis of
ene expression may require at least 3 [ 52 ]. Such meta-analyses
 ust solv e the important issue of handling batc h effects (e.g., us-
ng sv a pac ka ges [ 53 ] or PEER tools [ 54 , 55 ]) when mer ging data
r om m ultiple sources and attempting to use m ultisource r eplica-
ion for statistical analysis. Not only can the complete datasets be
arnessed in the future, but they can also limit the need for the
ame sample to be sequenced again, saving resources for dataset
roduction and storage. Ho w ever, upfront costs of production are
houldered by the original data producer and prohibit much con-
ideration of potential future reuse benefits. A model for partially
ransferring the costs of the initial experiment from the individ-
al to the community would be r equir ed as an incentive for ad-
itional data gener ation. Additionall y, futur e use objectives can
e difficult to pr edict, and emer ging tec hnologies can make nu-
erous datasets irrelevant. The most important step that can be
ade by the data producers , journals , and funding agencies in

nsuring futur e r euse is to submit complete metainformation, in-
luding recorded factors that were not relevant to the original
tudy. 

Looking at the example of the biomedical sphere in solving is-
ues of data quality, the a gricultur al r esearc h comm unity should
dopt more standardization across the board. While file type stan-
ardization is common for sequence-based data (e.g., FASTA or
ASTQ), there is a lack of experimental protocol, sample han-
ling, computational pipeline, and statistical standards present

n a gricultur al r esearc h. This makes assessing data quality one
f the biggest barriers to dataset reuse. Unified recommenda-
ions, if not standards, for all aspects of data collection would
nable more successful data reuse, increasing a dataset’s eco-
omic utility, with the added benefit of aiding the data producer

n making their r esearc h mor e br oadl y compar able . T he AgBio-
ata Genome Nomenclature working group is currently trying to
ddress this issue. Such standards need to be broadly applicable
nd not too se v er e, in a “legacy standard” format that does not
old bac k futur e stricter r equir ements and de v elopments in the
eld. 

ncentivizing complete metadata for reuse 

he missing information about datasets available to a potential
euser exacerbates the problem of lacking metadata standards.
istorically, the need for minimum metadata standar ds w as rec-
gnized and implemented by many journals and funding agen-
ies, but missing metadata is still one of the main barriers to data
euse cited by researchers [ 5 , 49 ]. 

While most sequencing datasets are released through INSDC’s
atabases [ 44 ], there is a sparsity of metadata accompanying
hem. For example, the precise tissue type, cultivation conditions,
r de v elopmental sta ge ma y not ha v e been r ecorded. Complete
etadata ar e especiall y important for RN A sequencing (RN A-seq)

atasets because the tr anscriptome r esponds quic kl y to the envi-
onmental conditions of the sampled individual. As DNA methy-
ation can now be investigated based on Oxford Nanopore Tech-
ologies or Pacific Biosciences HiFi sequencing data, information
bout the conditions prior to DNA extraction gains importance.
eusers might want to study the methylation of DNA in response
o certain environmental conditions or treatments. Further, meth-
ds used to minimize sample-to-sample variation due to sequenc-
ng methods, such as barcoding of pooled samples, must be clearly
xplained. If ther e ar e data fr om the same sample sequenced in
ifferent lanes to increase the sequencing co verage , this needs to
e annotated in the metadata table, as it can lead to confusion
hen distinguishing samples that were just sequenced in differ-

nt lanes from replicates. 
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The paradigm of ontologies has enabled the interoperability 
and reuse of data in the genomics era [ 44 , 56 , 57 ]. Ho w ever, using
available ontologies to describe data from agriculturally relevant 
species is often not a ppr opriate, as suc h tools are model organ- 
ism and medical based. Initiatives like the Genomic Data Commons 
[ 50 ] do provide scaffolds of metadata standards but are limited to 
a small number of data types and pur poses. Furthermor e, meta- 
data submission templates tend to only work for some organisms 
or sample types and do not enforce the use of controlled vocab- 
ularies. Smaller, community-based efforts are on the way to im- 
pr ov e av ailable ontologies (e.g., MIAPPE [ 11 ] and F AANG’ s Ontology 
Improver [ 58 ]). 

The biggest effort to integrate data and metadata with avail- 
able controlled vocabulary standards is the INSDC [ 59 ]. It enables 
extensive data sharing and inter oper ability, with the r esponsibil- 
ity for the quality and accuracy of the record naturally falling on 

the submitting author, not on the database [ 60 ]. Inter oper ability 
standards in medicine for genotypic and phenotypic patient data 
[ 61 ] could be informative for agricultural research as well. These 
health information formats include metadata on the tests run,
and sometimes e v en on the anal yses not run, to enable health 

car e pr oviders to integr ate r esults fr om div erse panels. Suc h com- 
plete metadata could generate a large overhead in some circum- 
stances and must be considered in the context of agricultural ge- 
nomics. Various communities have proposed guidelines for stan- 
dardizing metadata [ 62–65 ] and minimum information standards 
in experiments (MIAME and MINSEQE), but there is still a need 

for more comprehensive standardization of metadata across dif- 
ferent databases, in both what is ca ptur ed and how it is cap- 
tured. 

Without incentives or requirements, researchers often seek the 
lo w est effort route to publication with minimal metadata. As the 
submission of metadata can r equir e substantial work, there is 
a trade-off between collecting all datasets via a lenient submis- 
sion system and mandating compr ehensiv e metadata to boost the 
reuse potential of datasets [ 5 ]. Initiatives like nfdi4plants [ 66 ] in 

German y ar e working to make data submission as convenient as 
possible. Ideally, submitting users would be supported by auto- 
matic completion of certain fields. Data documentation takes ex- 
tra effort, necessitating the need for a r e w ar d system to encour a ge 
the production of datasets amenable to reuse . T his could include 
dataset citations, credit for shared data in promotion, and other 
r e w ar ds for datasets that are reused often and successfully. 

A major step forw ar d is the recent launch of NCBI’s Datasets 
r esource, whic h is guided by FAIR principles and delivers, among 
other tools, simplified discovery and access to metadata [ 67 ]. One 
of the motivations behind the initiative is that “explicit linkage 
between sequence data and its metadata facilitates impr ov ed 

reusability and proper attribution” [ 67 ]. 

To ward interoper ability via data formatting 

The genetics and genomics comm unity conv er ged r a pidl y on data 
format standards and is on the road to establishing standards for 
the metadata stored within data files [ 46 , 68 ]. Widespread stan- 
dardization of these file formats facilitates easy interconversion 

and use by analysis and visualization software, ensuring inter- 
operability. The Sequence Alignment Map (SAM) format for high- 
throughput sequence data, as well as its r espectiv e ma pping r e- 
sults, r equir es the recording of a data dictionary with information 

on the r efer ence genome sequence used for ma pping, suc h that 
it can ensure any subsequent analysis will be r equir ed to use the 
same r efer ence [ 69 ]. Ther e ar e also pr ovisions ther ein to r ecord 
ata-pr ocessing information, suc h as the pr ogr am and command
ine used to generate the mapped dataset and any postprocessing,
ncluding sorting and PCR duplicate r emov al. Other standardized
ormats with enforced rules include the SAM compressed format 
inary Alignment Map (BAM) [ 70 ], the Variant Call Format (VCF)
 71 , 72 ], the Gene Transfer Format (GTF) [ 73 ], the General Feature
ormat (GFF3) [ 74 ], and Browser Extensible Data (BED) [ 75 ] files
hat allow for annotation of regions of a given genome sequence
 76 ]. All these files can be coordinate indexed such that they may
e searched and subset easily by locus or loci. 

As evidenced by the wide acceptance of universal data formats 
n genomics r esearc h, the limitation to the wider adoption of data
euse is not the lack of defined data formats but the consistency
f their use. Many datasets are deposited according to the param-
ters of the database chosen to hold the data. The database may
llow for se v er al types of files when it comes to, for example, tran-
criptomic studies. A r esearc her has the option of uploading the
ata in the form of a set of FASTQ files or maybe as a set of BAM
les, with the choice made dictating how reusable the data can be
or others. A possible short-term solution is for the repositories to
r ovide mor e r euser-friendl y tools that facilitate interconv ersion
etween formats (e.g., FASTQ and BAM), without accompanying 
oss of metadata. 

Although the genomics datasets of types mentioned above 
ave documented standards requiring information such as what 
 efer ence genome sequence and what version were used for their
nalysis (standar ds enfor ced b y assertions in anal ysis pac ka ges
ike the Genome Analysis Toolkit [ 77 ]), mapping to reference genome
equences does create an impediment to inter oper ability with
rocessed or secondary datasets. Any long-term solution to this 
r oblem would r equir e r efer ence-fr ee anal ysis of data. This is
n area of active research [ 78–80 ], and a future in which in-
ices accompany raw datasets for rapid query and use in syn-
 hr onous anal yses that run at remote sites seems possible. Fur-
her, data types not based in genomic sequence (e.g., proteomics
nd metabolomics) r equir e their o wn standar dized formatting
nd face unique issues of r efer ence-gated inter oper ability [ 81 ,
2 ]. 

Inter oper ability with data from outdated wet lab and/or com-
utational analysis methods can also present a challenge. A few
ools have been built to bridge the data found in new er, standar d-
zed sequencing files with data encoded by older formats such
s arrays and spa typing [ 83–85 ]. To guard against data obsoles-
ence, r esearc hers need to incor por ate thor ough anal ysis work-
ows (e.g., using resources like Protocols.io [ 86 ] to enrich meta-
ata for methodological detail). Hence, inter oper ability is also
upported by adherence to metadata and data quality standards 
escribed in pr e vious sections. 

To encour a ge inter oper ability, data war ehouses and journals
an raise their standards for data submission to r equir e the inclu-
ion of the outputs of primary analyses . T his practice is often en-
our a ged but not r equir ed or enforced. Synthesis Centers (funded
y the NSF) are examples of projects that highly promote data
 euse, and integr ation and r euse ar e ubiquitous, demonstr ating
he economic efficiency of data exchange with incredible success 
 33 ]. Recent efforts have also been made to boost inter oper ability
n the Bgee knowledge base by taking stock of file-based data ex-
 hange, pr ogr ammatic interfaces, and automatic inter oper ability
fforts [ 87 ]. The good news is that inter oper ability boosting seems
o have a positive domino effect enabled by automation, which
ill hopefully lead to near-total integration capabilities soon [ 87 ],
lthough benefits per ceived b y all stakeholders are still lacking
 57 ]. 
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Figure 3: Recommendations for bridging the data availability gap include data producers, scientific journal publishers, and funding bodies as 
stakeholders. 
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ridging the data availability gap: a role for all 
takeholders 

 major barrier to reuse is the availability of data with their ac-
ompanying metadata and sample information in repositories
Fig. 2 A). It is crucial for data providers to include all samples and
 ele v ant information in a clear sequence, using the provided data
ormat or metadata template when a vailable . T his includes raw
ata and metadata, including sequencing methods, sample name,
issue, or ganism, pr oject, and associated papers . T he information
rovided needs to be clear and comprehensive to facilitate the re-
r oducibility of anal yses . T he commitment of all data stakehold-
rs is crucial in narrowing the data av ailability ga p, as summa-
ized in Fig. 3 . 

Man y journals pr ovide generic statements for authors to de-
lare that all data are included in the supplementary files of the
rticle or deposited in a public repository. Ho w ever, such state-
ents are not helpful without specific accessions or links that

oint readers to the respective datasets. A further contributor to
his data av ailability ga p is the “data available on request” state-

ent present in many papers that do not provide a direct link to
heir data in a repository but ask the potential reuser to contact
hem to r eceiv e it. A study on data availability from papers pub-
ished in Science and Nature in 2021 found that an alarming less
han 50% of data stated to be “available upon request” could be
ffectiv el y obtained fr om the original authors [ 88 ]. Further, about
0% of all metagenome assemblies are not easily accessible due to
he lack of accession numbers in the publication or due to empty
ccession numbers [ 89 ]. Even if data ar e pr ovided, it can take
onths to r eceiv e them [ 88 ], with questions about stor a ge and
ana gement arising. Mor e encour a gingl y, after man y attempts at

ontact, 83% of data were made available at least partially [ 88 ]. 
J ournals could impro ve the situation by providing more de-

ailed templates that r equir e r esearc hers to fill in accessions or
RLs and to include data accessibility as a criterion for r e vie wers

o assess. Options to link a GitHub repository with code, Open Sci-
nce Fr ame work material, or specific datasets to the submission
ould be another option. Howe v er, enforcing suc h data standards
 equir es additional labor by editorial staff and r e vie wers. While
ournals would be well placed to enforce a policy that would ben-
fit reuse, funding bodies could be in an e v en str onger position to
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mandate r a pid publication of all datasets under an open license.
Data management plans are required parts of grant proposals but 
are not enforced or c hec ked for compliance in subsequent ap- 
plications. Automatic c hec ks of the submitted datasets would be 
helpful to reduce the amount of work that r e vie wers need to in- 
vest in the technical aspects of a journal article or grant proposal 
submission. 

Datasets should be shared through the repository appropriate 
for the data type as summarized by Deng et al. (Table 1) [ 44 ]. For 
example, RNA-seq datasets should be submitted to Gene Expres- 
sion Omnibus (GEO) to make precomputed count tables and the 
underl ying r aw sequence r eads av ailable. The r eads ar e passed 

on to the SRA, which also mirrors them through the ENA and the 
DDBJ. This ensures the preservation of the data. Direct submis- 
sion of RNA-seq datasets to the SRA/ENA/DDBJ is possible and 

common but does not allow the sharing of already computed 

count tables . T his places a bur den on resear chers trying to reuse 
these datasets. Genomic sequencing data are best placed in this 
mirr or ed database to ensure availability to the community. Ac- 
cession numbers for data submitted to repositories should also 
be included in publications. Generalized repositories often have 
minimal metadata r equir ements that suit many data types and 

support open data but do not enable FAIR use. More specialized 

databases that serve specialized communities can often be bet- 
ter suited for detailed metadata sharing and can be contacted by 
authors for advice. As more data management plans contain a 
mac hine-r eadable r equir ement, dir ect collabor ation with r eposi- 
tories becomes e v en mor e important. 

All data published to sequence arc hiv es ar e data that hav e 
had some primary analyses, including quality control, performed 

on them. For next-generation sequence data, nearly all will have 
been mapped to a reference genome sequence. Whole genome 
shotgun sequence data will likel y hav e been variant called and 

will have at least a VCF file, in addition to the BAM file and the 
mapped FASTQ file. RNA-seq and epigenetic datasets will have 
been mapped and likely have quantified transcripts and peak 
sizes, r espectiv el y. F or example, DNA meth ylation data will often 

suppl y onl y r aw r eads in FASTQ and differ entiall y methylated r e- 
gions, the latter r epr esenting the final output of highl y v ariable 
and long pipelines. For the most part, the data that are being 
stor ed and ar e filling up public r epositories ar e the r aw FASTQ 

files. Due to the large sets of information and calculations needed 

to examine all manner of “omics” data, computational methods 
are emplo y ed for analyses . In some cases , the anal yses r equir e 
the authors to write code, yet they often do not share the code 
itself, diminishing the usefulness of the shared data. 

For such datasets to be reused, scientists are required to not 
only download the raw data but also reprocess them. This reanal- 
ysis is likely to generate many identical pipeline intermediates 
and final datasets that were created by the original analysis. Be- 
ing able to demonstr ate r epr oducibility in analysis is important 
and too often pr ov es impossible [ 90 ], but it is equally important 
that the datasets ac hie v e their full utility potential through reuse 
for novel purposes [ 91 ]. The processes that are performed to an- 
al yze the r aw data ar e often beyond the computational resources 
and skills available to most researchers who could benefit from 

them. Ther efor e, it is vital that detailed computational experi- 
mental methods used in the study (i.e., scripts) are made available 
alongside the publication, for example, on GitHub. It may be use- 
ful to make processed data, such as transcriptome and genome 
sequence assemblies , genomic variants , and peaks identified us- 
ing technologies like chromatin immunoprecipitation sequenc- 
ing (ChIP-seq), available along with the underlying reads when- 
 v er possible. Ho w e v er, storing intermediates and final pr oducts
f pipelines comes at the cost of increasing the amount of nec-
ssary disk space, an important trade-off to consider. A possible
hort-term solution to this bottleneck to reuse is to make all code
sed in the computational analysis available alongside raw and/or 
rocessed datasets. 

Sustainabl y storing e v er-gr owing datasets is a current and
r owing c hallenge. Disk space and electric po w er consumption
ill continue to rise as database sizes increase and data reuse be-

omes more popular at r esearc h institutes and companies . T here
s a recent trend to move analyses to the data instead of moving
he data, for example, through cloud computing [ 92 ]. Given the ex-
losion in dataset sizes, this seems like a logical step to take, since
an y lar ge datasets ar e alr eady av ailable within a cloud environ-
ent. Ho w e v er, this harbors the risk that datasets will be effec-

iv el y loc ked behind pa ywalls , as users would be r equir ed to pay
or the computational resources. Once fully established, such a 
ystem could lead to expensive charges beyond the costs of main-
aining the cloud infr astructur e. It would be important to have a
ublicl y funded infr astructur e or to ensur e sufficient competition
etween se v er al pr o viders . Efforts for establishing more sustain-
ble funding of biodata resources are already underway (e.g., the
lobal Biodata Coalition [ 93 ]), as ar e comm unity r ecommenda-

ions for sustainable database management [ 94 ]. 
As citations of scientific publications are considered the cur- 

ency of science, citations of datasets could acquire similar im-
ortance [ 95 ]. Open Science Fr ame work [ 96 ] pr ovides scientists
ith options to easily share datasets that are citable and search-
ble through Digital Object Identifiers (DOIs). The benefits asso- 
iated with the publication of paper preprints extend to datasets
entioned in them, enabling instant dissemination and citation 

f DOIs. A cultural shift or requirement is needed in the long term
o ensure that dataset identifiers are included in the main text of
ublications, enabling automatic readers to discover them. Addi- 
ionall y, automated liter atur e tr ac king solutions could cr edit the
mpact of a dataset by tr ac king whene v er this dataset is men-
ioned in a subsequent publication (e.g., DataCite [ 97 ]). For meta-
nalyses that contain large numbers of datasets that cannot all
e mentioned in text, it would be necessary to de v elop an auto-
atic screen that searches all supplementary files for mentioned 

OIs. Suc h a scr een could be extended to patents to analyze the
ommercial r ele v ance of datasets. 

Rew ar ds for well-documented data submissions could be a
trategy to further improve the quality and quantity of publicly
vailable datasets [ 98 ]. Among them could be an evaluation crite-
ion for r esearc h pr oposals of data an investigator has shared in
ccordance with data-sharing plans in pr e viousl y funded r esearc h
r ojects. Researc hers spend substantial amounts of time and re-
ources on generating and submitting datasets . T his could be re-
 ar ded b y tr ac king the number of studies r eusing these datasets,
s attempted by the Omics Discovery Index (OmicsDI) [ 99 ]. Fund-
ng a gencies, univ ersities, and companies would need to make hir-
ng decisions based on this criterion, similarly to how they already
o with publication citations. As this would be a rearw ar d-facing
tatistic, it would likely come with the same biases and issues of
quity as citations of scientific publications, namely, self-citation,
ender, racial, and institutional bias [ 100 ], but may still incentivize
he generation of more reusable datasets. 

a ta o wnership and sharing requirements 

n important source of genetic material for r esearc h in plant
nd animal genomics is samples from genetic lines derived from
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reeding companies that have current commercial value or intel-
ectual pr operty. Often, arr angements to use suc h data for exper-
ments are important for omics analyses to be relevant to species
f a gricultur al importance. Br eeding companies often hav e lar ge
opulations with excellent metadata and can provide samples at

ittle to no additional cost. Ho w e v er, these companies need to pro-
ect their investments in intellectual property and often prohibit
 esearc hers fr om making their sequence or omics data public (e.g.,
 recent dispute over intellectual property rights for improved
eeds [ 101 ]). Unfortunately, this is a major barrier to reusing rele-
 ant a gricultur al data. 

There is a challenge in having access to relevant, affordable
tudy populations from breeding companies that can also be
har ed publicl y as sequence or genotype data. The extent of shar-
ng is also unknown as a reliable assessment of the economic im-
ortance of datasets would be difficult to ac hie v e because most
ompanies could not permit an analysis of internal data reuse to
rotect their intellectual property. Enabling a self-reporting sys-
em could be an a ppr oac h to gain insights into data reuse within
ompanies, in addition to the dataset citation r e w ar d system men-
ioned in the pr e vious section. Finding common ground in pre-
ompetitiv e r esearc h spaces and ways to le v er a ge industry data
or scientific discovery, while protecting intellectual property, will
elp facilitate the reuse of some industry data. 

Maintaining the competitive value of industry data is impor-
ant; thus, there is a need to de v elop nov el data-sharing solutions
hat protect intellectual property but facilitate more data shar-
ng. Se v er al methods hav e been pr oposed to ov ercome this pr ob-
em, including homomor phic/monomor phic encryption and fed-
rated learning methods [ 102–105 ]. The inability to share industry
ata inhibits publication in an increasing number of journals. Ad-
itionally, it also threatens to reduce public–private research part-
erships funded by the US government as pending regulations will
 equir e all data funded by feder al gr ants to be made public tenta-
iv el y sometime in 2026 [ 106 ]. 

Agricultural industry datasets provide value to both the public
nd private sectors and importantly facilitate innov ativ e tr aining
f graduate students . T he ability to reuse industry data impacts
raduate student training since students are required to produce
ublications and demonstrate competency based on their exper-
ise. Reduced access to industry data will diminish training sought
y industry to work with industry-r ele v ant data. T hus , challenges
elated to data reuse of industry data have a broad impact. 

Another consideration is data generated from biological re-
ources that are maintained by specific cultur al gr oups (discussed
elow in “The importance and benefits of equity and inclusion”).
andr aces, tr aditional cr ops, and cr op wild r elativ es contain v alu-
ble genetic v ariation. Ther e ar e weak systems in place to guar-
ntee the engagement of these communities when their data are
sed and reused [ 107 , 108 ]. The human genomics community has
xperience in data privacy to maintain Health Insurance Portabil-
ty and Accountability Act compliance to ensure health care data
emain both private and portable . T he use of data management,
haring, and processing tools developed for medical systems may
elp overcome some of these challenges in agriculture. 

Ther e alr ead y exist n umer ous feder al gr ant data-sharing r e-
uirements. Genetic sequence data are an increasingly important
onsideration in policy regarding agricultural intellectual prop-
rty rights and conservation (e .g., T he Nago y a Protocol [ 109 ], Inter-
ational Treaty on Plant Genetic Resources for Food and Agricul-
ure [ 110 ], African BioGenome Project [ 111 ]). The upcoming 2026

andate to make r esearc h funded by the US government pub-
icl y av ailable [ 106 ] will undoubtedl y alter the landsca pe of data
haring and ownership further. When it comes to future publicly
unded r esearc h, we belie v e that partnerships between public and
rivate entities should prioritize collective benefits to ensure that
he r e w ar ds of data r euse ar e r ea ped equitabl y. 

esource availability and user skill level 
oncerning high-throughput sequence data, the data that are
tor ed ar e typicall y unpr ocessed sequence datasets in FASTQ for-
at. For most genetic or genomic studies, this format is the start-

ng point for any analytical pipeline . T he bioinformatics skills and
omputational r esources r equir ed to stor e and tr ansform FASTQ
ata into, for example, quantified expression levels , variants , or
enotypes, exist in most larger research institutes . T herefore , we
elie v e that many issues of data storage and computational re-
ource av ailability ar e not the limiting factors in most US-based
cademic and government institutions any longer (which could be
aid a decade ago) (Fig. 2 A, C, D). Ho w ever, w orldwide, man y a gri-
ultur al r esearc hers and institutions do not hav e r eady access to
hese resources . T his constitutes a barrier to the reuse of these
ata, whic h, for man y, is insurmountable, constituting a major
hallenge to equity and inclusion in the future of data reuse. 

Additionally, user skill level, awareness of resources, and time
nvestment into data management are likely inhibiting a lot of
r oductiv e r euses and limiting how man y r esources ar e being
ade available for future reuse (Fig. 2 D). A recent study [ 20 ] shows

hat, at least anecdotally, skill or perceived ability was identified
y many participants as a major factor influencing reuse behav-

or. Methods of data stor a ge, sharing, and mana gement wer e iden-
ified across all science sectors and types of research activities,
ith most respondents to a 2017–2018 global survey of scientists

xhibiting “high and mediocre risk data practices,” for example,
toring data on USB drives [ 18 ]. That same survey found that at-
itudes to w ar d data reuse were mostly positive but that practice
oes not always support data storage, sharing, and future reuse
 18 ]. Investment into data literacy early in science education will
ddress these issues in future generations of researchers [ 112 ].
e a gr ee with Tenopir et al. [ 18 ], namel y, that “pr ogr ams for both

wareness and to help engender good data pr actices ar e clearl y
eeded.” Further, data reuse can be incentivized using aw ar d sys-
ems for successful reuse cases , for example , the DataWorks! Prize
 113 ] or The Research Parasite Aw ar d [ 114 ]. 

he Importance and Benefits of Equity and 

nclusion 

he introduction of Big Data in a gricultur e has pr ovided tr emen-
ous opportunities for advancements [ 115 ]. Equity considera-
ions are essential to ensure that the benefits of a gricultur al data
 euse ar e shar ed equitabl y among div erse stakeholders, including
ar ginalized comm unities and vulner able populations [ 116 ]. 
The reuse of data can impr ov e equity and inclusion by reduc-

ng costs and increasing dataset utility. Nonetheless, the reuse of
ata r equir es computational ca pacity, Internet access, digital lit-
r acy, and pr oficiency in dominant languages. Despite significant
lobal disparities, nations are formulating policies and expanding
nfr astructur e to r eac h r emote, rur al, and periurban comm unities.
he percentage of people with Internet access has been steadily

ncr easing, although eac h locality has its own unique needs . T he
nternet plays a pivotal role in bridging the gap to access a wealth
f information. 

The knowledge disparities can be narrowed by employing data
isualization techniques and providing commentaries, detailed
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Figure 4: Data reuse can facilitate a positive feedback loop between 
striving for diversity , equity , and inclusion and the benefits of big data in 
a gricultur al r esearc h. T his ma y include ca pturing mor e div erse and 
cr eativ e solutions to problems and diversifying the agricultural 
genomics community. 
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explanations , glossaries , and links to both basic and complex in- 
formation. Data visualization, defined as “information which has 
been abstracted in some schematic form, including attributes or 
variables for the units of information,” plays a pivotal role in 

assisting non–data scientists in comprehending and effectively 
reusing data [ 117 ]. In contemporary data science, professionals 
ar e incr easingl y incor por ating adv anced tec hnologies into data vi- 
sualization, including algorithms, human perception, animation, 
and the de v elopment of computer gr a phics and softwar e . T hese 
innovations enable the discovery of valuable insights within vast 
datasets [ 118 ]. 

Documentation of data is essential for facilitating reuse, and 

it is crucial to link the outcomes of data reuse with contextual 
information. Scientists r equir e tec hnical details r egarding equip- 
ment and data pr ocedur es, maintenance of data formats, ontolo- 
gies, and metadata within a specific field [ 119 ]. Ho w e v er, individ- 
uals with varying levels of knowledge disparity often need access 
to more information. To address this need, databases and reposi- 
tories for reused data should be linked with institutional science 
comm unication websites, pr oviding compr ehensiv e explanations 
of fundamental concepts. 

Equall y, as numer ous studies hav e shown, div ersity br eeds in- 
no vation [ 120 ] (Fig. 4 ). T hus , to harness the full po w er of a data-
driv en futur e in a gricultur e, the omics comm unity needs to wr es- 
tle with the question of whether biases present in r esearc h ci- 
tation patterns (prestige of the authors being cited, their gender,
race, and nationality [ 100 ]) are transferred to datasets that are se- 
lected for reuse. 

It is also vital we adhere to and enforce the CARE (Collective 
Benefit, Authority to Control, Responsibility, and Ethics) princi- 
ples for Indigenous data governance [ 121 ] of existing and future 
datasets. As Carroll et al. [ 121 ] note, we must acknowledge that 
man y publicl y av ailable and r eused datasets alr eady use Indige- 
nous resources and traditional knowledge. A great resource for 
data sov er eignty-enhancing r esearc h is the Local Contexts initia- 
tiv e [ 122 ], pr oviding “a digital infr astructur e for comm unity gov er- 
nance of Indigenous data.” Our recommendation to the commu- 
nity is to engage with Indigenous comm unities, pr actice r espon- 
sible data stew ar dship, and use Indigenous ethics to determine 
data access [ 123 ]. This includes the use of a ppr opriate digital iden- 
tifiers and inquiry into and respect for ownership rights. Tradi- 
ional Knowledge Labels “impr ov e the quality of pr ov enance, en-
our a ge comm unities to enric h r ecor ds with their o wn traditional
nowledge, and increase capacity for better understanding of eq- 
ity and decision-making r egarding r e-use and circulation” [ 123 ] .
 he pro venance of any biocultural samples , collections , datasets ,
nd traditional knowledge should be noted in full in metadata. 

Although limited r esearc h has been conducted on access to
 gricultur al omics benefits [ 116 ], we can learn from ethics frame-
orks for health and biomedical data, which can be adapted to the
 gricultur al domain [ 124 ]. For example, Tiffin et al. [ 125 ] empha-
ize the need for data governance that protects vulnerable pop-
lations, especially in low-income and middle-income countries,
hen utilizing digital health data. Further, Mott et al. [ 104 ] dis-

uss the use of homomorphic encryption for secure data sharing,
hich can facilitate the inclusion of private or sensitive data with-
ut compromising data confidentiality. This technology could be 
 k e y enabler in making data sharing mor e inclusiv e, especiall y
hen dealing with sensitive information from Indigenous com- 
unities, as highlighted by Carroll et al. [ 123 ] 
On the heels of many studies quantifying discrimination in 

cademia [ 94 ], the big data community has a unique opportu-
ity to build a field of r esearc h with fe wer biases. Efforts should
e directed to w ar d creating centralized repositories that host di-
 erse a gricultur al datasets, making it easier for r esearc hers to lo-
ate and access r ele v ant information. Addr essing issues r elated
o data ownership and equitable access is vital if we are to r ea p
ll the benefits of data reuse as a global genomics community. 

he Future of Data Reuse Is Bright 
ere , we ha ve assessed challenges to reusing sequence-based
 gricultur al datasets and presented possible future solutions re-
ar ding (meta)data availability, o wnership, user resour ces, and
quity. There is a growing demand for the reuse of pub-
ished datasets and reinforcing the importance of well-structured 

atabases to increase these numbers in the future. A change in
lobal r esearc h cultur e that emphasizes the “R” for r euse in FAIR
ould cause significant increases in data submissions, accompa- 
ied by more frequent reuse. 

One of the biggest challenges of data reuse is to establish and
nforce (meta)data standards and sharing r equir ements. Defined 

ata standards and recommendations would address the issues of 
ata quality , availability , sparsity of metadata, and formatting in
he a gricultur al genomics field. The number of omics datasets is
ncr easing e v ery year, and to k ee p the data w ell organized, follo w-
ng some standards can be helpful to enable r epr oducibility, with
he added benefit of being good scientific practice. Other tradi-
ional knowledge management domains such as libraries, specif- 
call y data libr arians , ma y ultimately guide the creation of orga-
izational standards. Maintaining these standards, as well as de- 
ailing important information that was cited throughout this ar- 
icle , ma y facilitate the reuse of omics data for future analysis. It

ay also aid in bringing all areas of agricultural research on equal
ooting when it comes to the benefits of open science [ 126 ]. This
ill benefit future scientists and de v elopers of a pplications and
atabases, contributing to science. 

To aid in establishing best practices in the a gricultur al data
eld, we have compiled recommendations in a GitHub page [ 127 ],
hich we aim to k ee p updated with discussion points resulting

rom the AgBioData working group on data reuse. We invite any
nterested party to contribute to this community resource. 

The focus of this (ov er)vie w of the status of data reuse in agri-
ultur al r esearc h has been sequence-based datasets. Ho w e v er,
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 e ackno wledge that man y c hallenges and opportunities asso-
iated with these types of biological data ar e shar ed with non-
equence-based datasets. Indeed, these diverse data types come
ith their own unique set of challenges and rew ar ds of reuse.
xamples of these datasets include, and are not limited to, phe-
omes , metabolomes , proteomes , interactomes , en viromes , mi-
robiomes , lipidomes , and glycomes . Additionally, many analyses
nclude geogr a phic , climate , and ecological data, which must also
e considered for reuse purposes. Advances in artificial intelli-
ence promise to allow for more knowledge to be gleaned from
ar ge, shar ed, interdisciplinary datasets . T he omics r e volution is
till ongoing, and we must k ee p emerging data types in mind when
onsidering reuse standards and platforms. It will be important to
onsider how such data types can be integrated with sequence-
ased data for futur e a pplications, further emphasizing the im-
ortance of complete metadata and biosample information cur-
 entl y deposited in databases . We , in the AgBioData DRWG, be-
ie v e the future of data reuse is bright as more datasets are reused
uccessfully, contributing to the sustainability of a gricultur al r e-
earch in the omics era. 

onclusions 

ata reuse is beginning to yield exciting science across disciplines.
arnessing the po w er of lar ge a gricultur al omics pr ojects, like
armGTEx [ 31 ] and Rice3K [ 32 ], has demonstrated the detailed
nowledge that can be obtained from reuse. As many barriers to
euse k ee p falling, the biggest obstacle may contin ue to be the la-
or investment needed from the data producer (e.g., submitting
ata to repositories) and reuser (e.g., often convoluted process of
btaining data). Establishing more standards across data produc-
ion, management, and sharing would pave the way to lowering
he barrier of entry to the benefits of r euse. Man y data produc-
rs are sharing their data, but there is a need for more incentives
o encour a ge true FAIR compliance to facilitate r euse. Researc her
kill le v el, one of the major barriers to reuse, needs to be bolstered
ith guidance and training programs, ensuring equity across all

takeholders in the global a gricultur al comm unity. In addition, to
nsure the maintenance of data availability, it is imperative that
he scientific community continues to invest in data management
nfr astructur e and resources . T he future of data reuse will also
enefit from the development of user-friendly tools and platforms
hat facilitate data disco very, access , and analysis . 

The benefits are clear; data reuse facilitates the ability to ask
ig questions and pr ovides comm unity r esources about genomes
nd phenomes that one group alone cannot ac hie v e. As mor e
unding agencies are promoting data reuse, more scientists will
ee the exciting opportunities to solve grand challenges in biology.
he next big br eakthr ough in pr edictiv e biology will likel y r equir e
he integration of many diverse datasets . T he future of data reuse
n a gricultur e hinges on a collectiv e commitment to data mana ge-

ent, standards, infr astructur e de v elopment, and collabor ation
etw een resear chers . T he open science principles are necessary
o impr ov e innov ativ e r esearc h and sustainable a gricultur al pr ac-
ices . T he data are out there to reuse; it is time to de v elop your in-
ov ativ e idea and run with the exciting datasets that are already
 vailable . T he sky’s the limit! 
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