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Abstract

The scientific community has long benefited from the opportunities provided by data reuse. Recognizing the need to identify the chal-
lenges and bottlenecks to reuse in the agricultural research community and propose solutions for them, the data reuse working group
was started within the AgBioData consortium framework. Here, we identify the limitations of data standards, metadata deficiencies,
data interoperability, data ownership, data availability, user skill level, resource availability, and equity issues, with a specific focus
on agricultural genomics research. We propose possible solutions stakeholders could implement to mitigate and overcome these

challenges and provide an optimistic perspective on the future of genomics and transcriptomics data reuse.
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Background

The value of data reuse is one of the founding postulates behind
the Open Science movement yet remains an underexamined as-
pect of researchers’ experience of open data [1, 2]. Historically,
global sharing of biological datasets became technically possible
with the rise in access to the World Wide Web, and data reuse
transitioned into an attractive option for researchers through ben-
efits that came with an increasing number of available datasets
and reuse applications, as reviewed by Sielemann et al. [5] In the
past 3 decades, agricultural researchers have also adopted data
sharing and reusing practices alongside the rest of the genomics
community due to the benefits outweighing the reluctance some
may feel in sharing valuable data. Genomics data are particularly
amenable toreuse, as many different types of structural and func-
tional data are provided as DNA sequences, and many analytical
tools have been developed to analyze and integrate genomics data
types [3]. With constantly emerging sequence-based technologies,
the language of nucleotides has become increasingly ubiquitous
and useful. Alternatives for assays that traditionally have gener-
ated difficult-to-share data types, such as flow cytometry fluores-
cence, yield easy-to-share sequence-based data types to directly
integrate RNA and protein modalities [4]. However, no dataset is

perfect, and data producers can only strive to satisfy the require-
ments for its initial use and reuse. Some researchers have identi-
fied the risks and challenges associated with data reuse in the life
sciences [5, 6], which informs agricultural data management [7],
but a detailed assessment of the reuse issue in this area has not
been conducted yet.

Recently, a report on the status of open data called atten-
tion to the importance of data availability in reuse [1]; however,
barriers remain in making data amenable for reuse. Our objec-
tive in this perspective is to highlight concerns in data reuse
across the agricultural genomics community to identify major
challenges and viable solutions. We also provide our perspec-
tives on best practices for sharing data to make them more ac-
cessible and reusable, as well as how to reuse publicly available
data.

We define data reuse as the practice of utilizing existing data
for a novel scientific purpose beyond its original scope. Although
we recognize that this definition would include the use of ref-
erence genome sequences, we find that their reuse comes with
unique challenges beyond the scope of this article. Furthermore,
while the reuse of one’s own data fits under our definition, the
recommendations and perspectives set out in this article apply
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Figure 1: Biological data types are diverse, and their reuse comes with
unique challenges. The barriers and limitations of data reuse discussed
here include data quality and standards; missing metadata; issues of
formatting and interoperability; lack of data availability, ownership, and
intellectual property; and access to resources and skills.

primarily to data reuse by researchers other than the data pro-
ducer’s group.

While types of data in agricultural research are diverse and go
beyond sequence-based datasets, the sequencing community har-
bors a long-standing tradition of data sharing. A major advantage
of genomics data for agriculture is that most of such data has a
common sequence format and ontology, allowing the reuse and
tuning of tools developed in the well-funded biomedical sphere.
Reuse in genomics research is largely facilitated by the Interna-
tional Nucleotide Sequence Database Collaboration (INSDC) [8].
The INSDC consists of the National Center for Biotechnology In-
formation (NCBI), the European Bioinformatics Institute (EMBL-
EBI), and the DNA Data Bank of Japan (DDBJ), which collectively
support the Sequence Read Archive (SRA) and the European Nu-
cleotide Archive (ENA). Additionally, the China National Center
for Bioinformation’s (CNCB’s) National Genomics Data Center and
its Genome Sequence Archive also support the international ge-
nomics community [9]. Due to its predominance, we will focus on
the reuse of sequencing data in this article while acknowledging
the importance of other data types and emerging analysis tech-
nologies in the reuse research arena.

Reusing existing data brings significant benefits for scientific
research, such as saving time and cost without generating new
datasets, enabling meta-analyses and interdisciplinary research
by combining data from multiple studies, or new discoveries by
exploring novel hypotheses through integrating data from differ-
ent sources or using innovative analytical techniques. More and
more exciting publications are being produced that highlight the
value of data reuse, both in the animal and plant side of agricul-
turally important research [10-17]. Still, many datasets are not
reusable, or scientists may feel they do not trust or do not want
to use the data [18]. Several review articles have discussed the
opportunities and challenges of data reuse [5, 19-22], the latter
highlighted in Fig. 1.

Principles of Findability, Accessibility, Interoperability, and
Reusability (FAIR) are essential to enable successful sharing and
reuse of datasets in the “Big Data” world [23]. The science commu-
nity has also agreed to uphold data-sharing practices that enable
data reuse through accords and requirements that promote it [24-
28]. Recognizing the value of reusable datasets and the ubiquity
of FAIR principles might lead one to believe they are universally
accepted and applied. However, as any data stakeholder can tes-
tify, no dataset is without flaws [6], and a multitude of problems
can present themselves to a potential reuser.

Once initial challenges to sharing are overcome, the reuse of
existing datasets has numerous advantages [5]. Designing experi-

ments, collecting samples, and generating data usually involve ex-
tensive time, effort, and funding. Retrieving datasets from a repos-
itory and reusing them speeds up the research as the analysis
can be started immediately. Biologists can generate new hypothe-
ses to inform their experiments or analyze existing data for pre-
liminary results for emerging research proposals. Alternatively,
they may analyze public datasets as additional evidence to test
hypotheses in their studies. Through the reuse of datasets from
public domains, it is possible to investigate massive datasets for
data-driven discovery that would not be viable to generate as part
of an individual study or explore datasets of species that would
not otherwise be accessible. Examples include datasets that were
compiled over multiple years and represent a substantial number
of species in a certain taxonomic group (e.g., Earth BioGenome
Project [29] and Vertebrate Genomes Project [30]). Finally, reused
datasets enhance the equity of science as they are available with-
out substantial costs and allow anyone with sufficient computa-
tional resources to benefit from cost-effective data sharing, con-
tributing to the inclusion of early-career and underrepresented
scientists [5]. Bioinformatic software developers can rely on pub-
licly available datasets for their benchmarking studies, making it
possible to evaluate the performance of novel bioinformatic tools
based on real datasets. Biologists can perform analyses to gen-
erate hypotheses to inform their experiments or include public
datasets as additional evidence in their studies. As demonstrated
in the agricultural field by the CattleGTEx atlas [31], the power of
data reuse is growing with emerging technologies and the integra-
tion of enormous amounts of data. This includes harnessing high-
quality datasets for analysis using machine learning and cloud
computing, for example, the analysis of over 3,000 rice genomes
by DeepVariant [32], as well as using real datasets as quality control
for synthetic and artificial intelligence-generated datasets. The
benefits of shared infrastructure and avoidance of resource multi-
plicity, as embodied in National Science Foundation'’s (NSF’s) Syn-
thesis Centers [33], enable productive and efficient investigations
into new questions using “old” data, a desirable future for agricul-
tural research.

A unifying objective across biology is understanding the link
from genome to phenotype (G2P) to move toward predictive biol-
ogy; reuse of existing datasets will play an important role in this
process. G2P initiatives both depend on and act as a test of exist-
ing data reuse standards and infrastructure. In this way, G2P will
also identify where deficiencies exist in data reuse resources. Dif-
ferent funding organizations fund these long-term goals through
requests for applications (RFAs). For example, the Genome to Phe-
nome Blueprint [34] discusses the importance of data reuse for
animal genetics as a 10-year research priority as identified by re-
searchers at the US Department of Agriculture (USDA), also re-
flected in their Agricultural Genomes to Phenomes Initiative [35-
37], while the NSF runs the Understanding the Rules of Life pro-
gram [38]. These RFAs all seek ways to improve data reuse as
it is believed that integration of data across diverse and expan-
sive datatypes is needed to identify novel phenomena regarding
genome function. Tuggle et al. [35, 36] describe the shared efforts
of the animal and plant genomics communities to develop syn-
ergies and leverage strengths to advance genome-to-phenome re-
search to make scientific advancements that will accelerate appli-
cations in agriculture to help feed a growing world under a variety
of challenges. Comparative and evolutionary biology studies [29,
30, 39-42] are also important initiatives whose data will need to be
amenable to integration and reuse to help in these efforts. While
this perspective focuses on sequence-based data, it is important
to acknowledge the issues facing phenotypic data reuse, partic-
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Figure 2: Workflow chart depicting potential pitfalls preventing data from being reused. Bolded lines follow the minimum number of steps/questions a
potential reuser needs to consider. Dashed red lines denote steps that lead to a dataset not being reused due to circumstances that do not have to do
with the qualities of the dataset itself. Green and red lines lead to outcomes of data reuse after a critical question in dataset assessment is answered
yes or no, respectively. The workflow is divided into 2 parts (blue line) based on the FAIR principles of a dataset being findable and accessible, while

also interoperable and reusable. A, B, C, and D denote major decisions or

ularly the prevalent ad hoc formats, lack of archives for storing
and accessing data, and inability to share phenotype and geno-
type data together (due to agreements with industry or lack of in-
frastructure). For G2P initiatives to be successful, sequence-based
and phenotype datasets need to be combined, overcoming their
respective barriers to reuse and challenges of integration.

To assess the data reuse needs and obstacles that this com-
munity faces, our working group explored the challenges associ-
ated with data reuse (and their potential solutions) through per-
sonal testimonies and discussions within the AgBioData consor-
tium’s Data Reuse Working Group (DRWG), as well as a review
of pertinent literature. The DRWG represents a diverse group of
researchers with varied interests in species and scientific appli-
cations of data within the domain of agriculture. The AgBioData
Consortium [43] is a group of genomics, genetics, and breeding
databases and partners working to consolidate data standards
and best practices [44-46]. The issues and opportunities presented
here were generated as part of regular meetings, conference pre-
sentations, and workshops held as part of a data reuse project
funded by the USDA AG2PI [37].

Barriers to Data Reuse and
Recommendations to Overcome Them

Consider a potential data reuser in agricultural research on their
path to a dataset, as depicted in Fig. 2. They are seeking data from
an experiment they learned about at a conference and can locate
the paper in which the dataset was originally used. Sometimes

workflow divergence points.

they need to email the corresponding author to overcome the bro-
ken link to the datasets, and they eventually find the dataset in
an online repository (if the data are not in local storage instead)
(Fig. 1A). The dataset itself might be of unknown or poor qual-
ity, from undisclosed provenance, without proper documentation,
or contain incomplete or even incorrect metadata. All these fac-
tors can generate confusion in the comprehension of the data and
make their reuse challenging. Our reuser must assess whether
their subjective requirements of “quality” are met before decid-
ing to reuse the dataset (Fig. 2B). Data ownership rights must
be checked and can be difficult to adhere to with older, miss-
ing, or ambiguous licenses. The next problem the reuser might
encounter is the format of the dataset and if it can be correctly
and successfully interchanged into a configuration their down-
stream analysis supports, which might depend on their skill level
(Fig. 2C). If they are attempting to retrieve large datasets from a
study, they might not have access to sufficient computational re-
sources to store the raw datasets or run the analysis (Fig. 2D). The
intermediate results produced in the original study, which could
partially remedy the storage problem, may not be available on the
repository. Itis also likely that intermediate results were produced
based on an outdated version of the reference genome sequence
or its annotation. Furthermore, the hopeful reuser could be a stu-
dent, who seeks counsel from their adviser but is informed that
the experiment (or public data in general) is untrustworthy, or un-
suitable, because of ethics or proprietary constraints. For reuse of
a dataset to be successful, these issues must be overcome. The
prevalence of these problems can vary depending on the data
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type, prominence of the original study, the repository they are
in, and user skills. However, most stakeholders acknowledge that
these issues remain problematic [18], including in agricultural re-
search.

Data quality standards as a solution

No dataset is perfect [5, 6], but that does not mean it is not suit-
able for reuse. As data are made publicly available regardless of
the quality metrics, data quality assessment and standardization
are important considerations [6] (Fig. 2B). Statisticians are well
aware of this issue [47], which is particularly problematic in the
life sciences likely due to the complexity of biological systems,
number of variables, and scale of experiments. The difficulty in
obtaining and understanding the context surrounding the avail-
able data has been identified as a major obstacle to reuse in syn-
thetic biology [48] where interdisciplinarity is one of the defining
features of the field. We can extrapolate similar issues to agricul-
tural research, which often involves cross-disciplinary collabora-
tion that combines diverse (meta)data types requiring integration
and analysis.

To assess if and how a publicly available dataset can be used
in analyses beyond its original purpose, a decision must be made
about whether it is suitable for reuse. In a sequence-based con-
text, data suitability can mean a variety of dataset properties, in-
cluding coverage, depth, technical and biological replication, tis-
sue type and sample collection method, extraction method and
library preparation, and other criteria. Further, sequencing tech-
nology, platform, chemistry kits used, flowcell version, and re-
lated information must be considered as is required by base-
callers for conversion into the sequence. All these technologies
are also continuously under fast-paced development. With this in
mind, whether a dataset is of sufficient quality and suitable to
be reused is a difficult and largely subjective decision [49] and
varies between applications. While there are some data type-
specific standards available (e.g., Genomic Data Commons [50]), their
scope is limited. Agricultural research is often multidisciplinary,
has complex experimental designs, and spans many nonmodel
species, which makes applying any universal standard very diffi-
cult.

Unified experimental protocols or bioinformatic pipelines for
common data types and organisms are rare. This is not a problem
in and of itself at the level of data production, although an off-the-
shelf pipeline could streamline the process and provide bench-
marking for workflow development. The lack of standard proto-
cols and pipelines is problematic when it comes to data reuse.
Not only can it be difficult to obtain the exact experimental pro-
tocol used (e.g., discussions of data reuse often result in anec-
dotes of lost protocols with unanswered emails and/or students
who graduated), but meta-analyses are also hindered by a lack
of standardization. Sharing experimental designs and protocols
together with produced datasets, which greatly benefits reuse, is
a challenge that the international data standards rarely address.
Examples of minimum information standards beingimplemented
by necessity include the Minimum Information About a Microar-
ray Experiment (MIAME) and Minimum Information about a Se-
quencing Experiment (MINSEQE) [51].

Further, an important question that needs to be considered in
the field is whether our experiments should be designed with fu-
ture data reuse in mind. For example, while for the original data
producer, one biological replicate may have been sufficient for the
purposes of gene prediction, a statistically robust meta-analysis of
gene expression may require at least 3 [52]. Such meta-analyses

must solve the important issue of handling batch effects (e.g., us-
ing sva packages [53] or PEER tools [54, 55]) when merging data
from multiple sources and attempting to use multisource replica-
tion for statistical analysis. Not only can the complete datasets be
harnessed in the future, but they can also limit the need for the
same sample to be sequenced again, saving resources for dataset
production and storage. However, upfront costs of production are
shouldered by the original data producer and prohibit much con-
sideration of potential future reuse benefits. A model for partially
transferring the costs of the initial experiment from the individ-
ual to the community would be required as an incentive for ad-
ditional data generation. Additionally, future use objectives can
be difficult to predict, and emerging technologies can make nu-
merous datasets irrelevant. The most important step that can be
made by the data producers, journals, and funding agencies in
ensuring future reuse is to submit complete metainformation, in-
cluding recorded factors that were not relevant to the original
study.

Looking at the example of the biomedical sphere in solving is-
sues of data quality, the agricultural research community should
adopt more standardization across the board. While file type stan-
dardization is common for sequence-based data (e.g., FASTA or
FASTQ), there is a lack of experimental protocol, sample han-
dling, computational pipeline, and statistical standards present
in agricultural research. This makes assessing data quality one
of the biggest barriers to dataset reuse. Unified recommenda-
tions, if not standards, for all aspects of data collection would
enable more successful data reuse, increasing a dataset’s eco-
nomic utility, with the added benefit of aiding the data producer
in making their research more broadly comparable. The AgBio-
Data Genome Nomenclature working group is currently trying to
address this issue. Such standards need to be broadly applicable
and not too severe, in a “legacy standard” format that does not
hold back future stricter requirements and developments in the
field.

Incentivizing complete metadata for reuse

The missing information about datasets available to a potential
reuser exacerbates the problem of lacking metadata standards.
Historically, the need for minimum metadata standards was rec-
ognized and implemented by many journals and funding agen-
cies, but missing metadata is still one of the main barriers to data
reuse cited by researchers [5, 49].

While most sequencing datasets are released through INSDC's
databases [44], there is a sparsity of metadata accompanying
them. For example, the precise tissue type, cultivation conditions,
or developmental stage may not have been recorded. Complete
metadata are especially important for RNA sequencing (RNA-seq)
datasets because the transcriptome responds quickly to the envi-
ronmental conditions of the sampled individual. As DNA methy-
lation can now be investigated based on Oxford Nanopore Tech-
nologies or Pacific Biosciences HiFi sequencing data, information
about the conditions prior to DNA extraction gains importance.
Reusers might want to study the methylation of DNA in response
to certain environmental conditions or treatments. Further, meth-
ods used to minimize sample-to-sample variation due to sequenc-
ing methods, such as barcoding of pooled samples, must be clearly
explained. If there are data from the same sample sequenced in
different lanes to increase the sequencing coverage, this needs to
be annotated in the metadata table, as it can lead to confusion
when distinguishing samples that were just sequenced in differ-
ent lanes from replicates.
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The paradigm of ontologies has enabled the interoperability
and reuse of data in the genomics era [44, 56, 57]. However, using
available ontologies to describe data from agriculturally relevant
species is often not appropriate, as such tools are model organ-
ism and medical based. Initiatives like the Genomic Data Commons
[50] do provide scaffolds of metadata standards but are limited to
a small number of data types and purposes. Furthermore, meta-
data submission templates tend to only work for some organisms
or sample types and do not enforce the use of controlled vocab-
ularies. Smaller, community-based efforts are on the way to im-
prove available ontologies (e.g., MIAPPE [11] and FAANG's Ontology
Improver [58]).

The biggest effort to integrate data and metadata with avail-
able controlled vocabulary standards is the INSDC [59]. It enables
extensive data sharing and interoperability, with the responsibil-
ity for the quality and accuracy of the record naturally falling on
the submitting author, not on the database [60]. Interoperability
standards in medicine for genotypic and phenotypic patient data
[61] could be informative for agricultural research as well. These
health information formats include metadata on the tests run,
and sometimes even on the analyses not run, to enable health
care providers to integrate results from diverse panels. Such com-
plete metadata could generate a large overhead in some circum-
stances and must be considered in the context of agricultural ge-
nomics. Various communities have proposed guidelines for stan-
dardizing metadata [62-65] and minimum information standards
in experiments (MIAME and MINSEQE), but there is still a need
for more comprehensive standardization of metadata across dif-
ferent databases, in both what is captured and how it is cap-
tured.

Without incentives or requirements, researchers often seek the
lowest effort route to publication with minimal metadata. As the
submission of metadata can require substantial work, there is
a trade-off between collecting all datasets via a lenient submis-
sion system and mandating comprehensive metadata to boost the
reuse potential of datasets [5]. Initiatives like nfdi4plants [66] in
Germany are working to make data submission as convenient as
possible. Ideally, submitting users would be supported by auto-
matic completion of certain fields. Data documentation takes ex-
tra effort, necessitating the need for a reward system to encourage
the production of datasets amenable to reuse. This could include
dataset citations, credit for shared data in promotion, and other
rewards for datasets that are reused often and successfully.

A major step forward is the recent launch of NCBI's Datasets
resource, which is guided by FAIR principles and delivers, among
other tools, simplified discovery and access to metadata [67]. One
of the motivations behind the initiative is that “explicit linkage
between sequence data and its metadata facilitates improved
reusability and proper attribution” [67].

Toward interoperability via data formatting

The genetics and genomics community converged rapidly on data
format standards and is on the road to establishing standards for
the metadata stored within data files [46, 68]. Widespread stan-
dardization of these file formats facilitates easy interconversion
and use by analysis and visualization software, ensuring inter-
operability. The Sequence Alignment Map (SAM) format for high-
throughput sequence data, as well as its respective mapping re-
sults, requires the recording of a data dictionary with information
on the reference genome sequence used for mapping, such that
it can ensure any subsequent analysis will be required to use the
same reference [69]. There are also provisions therein to record
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data-processing information, such as the program and command
line used to generate the mapped dataset and any postprocessing,
including sorting and PCR duplicate removal. Other standardized
formats with enforced rules include the SAM compressed format
Binary Alignment Map (BAM) [70], the Variant Call Format (VCF)
[71, 72], the Gene Transfer Format (GTF) [73], the General Feature
Format (GFF3) [74], and Browser Extensible Data (BED) [75] files
that allow for annotation of regions of a given genome sequence
[76]. All these files can be coordinate indexed such that they may
be searched and subset easily by locus or loci.

As evidenced by the wide acceptance of universal data formats
in genomics research, the limitation to the wider adoption of data
reuse is not the lack of defined data formats but the consistency
of their use. Many datasets are deposited according to the param-
eters of the database chosen to hold the data. The database may
allow for several types of files when it comes to, for example, tran-
scriptomic studies. A researcher has the option of uploading the
data in the form of a set of FASTQ files or maybe as a set of BAM
files, with the choice made dictating how reusable the data can be
for others. A possible short-term solution is for the repositories to
provide more reuser-friendly tools that facilitate interconversion
between formats (e.g., FASTQ and BAM), without accompanying
loss of metadata.

Although the genomics datasets of types mentioned above
have documented standards requiring information such as what
reference genome sequence and what version were used for their
analysis (standards enforced by assertions in analysis packages
like the Genome Analysis Toolkit [77]), mapping to reference genome
sequences does create an impediment to interoperability with
processed or secondary datasets. Any long-term solution to this
problem would require reference-free analysis of data. This is
an area of active research [78-80], and a future in which in-
dices accompany raw datasets for rapid query and use in syn-
chronous analyses that run at remote sites seems possible. Fur-
ther, data types not based in genomic sequence (e.g., proteomics
and metabolomics) require their own standardized formatting
and face unique issues of reference-gated interoperability [81,
82].

Interoperability with data from outdated wet lab and/or com-
putational analysis methods can also present a challenge. A few
tools have been built to bridge the data found in newer, standard-
ized sequencing files with data encoded by older formats such
as arrays and spa typing [83-85]. To guard against data obsoles-
cence, researchers need to incorporate thorough analysis work-
flows (e.g., using resources like Protocols.io [86] to enrich meta-
data for methodological detail). Hence, interoperability is also
supported by adherence to metadata and data quality standards
described in previous sections.

To encourage interoperability, data warehouses and journals
can raise their standards for data submission to require the inclu-
sion of the outputs of primary analyses. This practice is often en-
couraged but not required or enforced. Synthesis Centers (funded
by the NSF) are examples of projects that highly promote data
reuse, and integration and reuse are ubiquitous, demonstrating
the economic efficiency of data exchange with incredible success
[33]. Recent efforts have also been made to boost interoperability
in the Bgee knowledge base by taking stock of file-based data ex-
change, programmatic interfaces, and automatic interoperability
efforts [87]. The good news is that interoperability boosting seems
to have a positive domino effect enabled by automation, which
will hopefully lead to near-total integration capabilities soon [87],
although benefits perceived by all stakeholders are still lacking
[57].
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DATA PRODUCERS
should provide:

» Raw data

» Metadata

» Sequencing methods

« Sample and project name

« Animal and tissue information

- Links to associated papers

+ All the above on the data-
type-appropriate reposiiory

= A way for future re-users to

cite the dataset

should:

repositories

FUNDING BODIE

« Effectively fund long-term

» Enforce (not just mandate)
rapid publication of all data
sets under an open license

* Fund development of tools
for automatic data
submission sanity checks

JOURNAL PUBLISHERS
should:

* Provide templates for submission
of accession numbers and URLs

» Give the option to link GitHub
repository with code or specific
datasets

+ Require all data, accompanying
metadata, code, and
intermediates to be made
availabie

* Remove the option of the "data

available on request" statement

MORE DATA AVAILABLE
FOR REUSE

Figure 3: Recommendations for bridging the data availability gap include data producers, scientific journal publishers, and funding bodies as

stakeholders.

Bridging the data availability gap: a role for all
stakeholders

A major barrier to reuse is the availability of data with their ac-
companying metadata and sample information in repositories
(Fig. 2A). It is crucial for data providers to include all samples and
relevant information in a clear sequence, using the provided data
format or metadata template when available. This includes raw
data and metadata, including sequencing methods, sample name,
tissue, organism, project, and associated papers. The information
provided needs to be clear and comprehensive to facilitate the re-
producibility of analyses. The commitment of all data stakehold-
ers is crucial in narrowing the data availability gap, as summa-
rized in Fig. 3.

Many journals provide generic statements for authors to de-
clare that all data are included in the supplementary files of the
article or deposited in a public repository. However, such state-
ments are not helpful without specific accessions or links that
point readers to the respective datasets. A further contributor to
this data availability gap is the “data available on request” state-
ment present in many papers that do not provide a direct link to

their data in a repository but ask the potential reuser to contact
them to receive it. A study on data availability from papers pub-
lished in Science and Nature in 2021 found that an alarming less
than 50% of data stated to be “available upon request” could be
effectively obtained from the original authors [88]. Further, about
20% of all metagenome assemblies are not easily accessible due to
the lack of accession numbers in the publication or due to empty
accession numbers [89]. Even if data are provided, it can take
months to receive them [88], with questions about storage and
management arising. More encouragingly, after many attempts at
contact, 83% of data were made available at least partially [88].
Journals could improve the situation by providing more de-
tailed templates that require researchers to fill in accessions or
URLs and to include data accessibility as a criterion for reviewers
to assess. Options to link a GitHub repository with code, Open Sci-
ence Framework material, or specific datasets to the submission
would be another option. However, enforcing such data standards
requires additional labor by editorial staff and reviewers. While
journals would be well placed to enforce a policy that would ben-
efit reuse, funding bodies could be in an even stronger position to
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mandate rapid publication of all datasets under an open license.
Data management plans are required parts of grant proposals but
are not enforced or checked for compliance in subsequent ap-
plications. Automatic checks of the submitted datasets would be
helpful to reduce the amount of work that reviewers need to in-
vest in the technical aspects of a journal article or grant proposal
submission.

Datasets should be shared through the repository appropriate
for the data type as summarized by Deng et al. (Table 1) [44]. For
example, RNA-seq datasets should be submitted to Gene Expres-
sion Omnibus (GEO) to make precomputed count tables and the
underlying raw sequence reads available. The reads are passed
on to the SRA, which also mirrors them through the ENA and the
DDBJ. This ensures the preservation of the data. Direct submis-
sion of RNA-seq datasets to the SRA/ENA/DDB]J is possible and
common but does not allow the sharing of already computed
count tables. This places a burden on researchers trying to reuse
these datasets. Genomic sequencing data are best placed in this
mirrored database to ensure availability to the community. Ac-
cession numbers for data submitted to repositories should also
be included in publications. Generalized repositories often have
minimal metadata requirements that suit many data types and
support open data but do not enable FAIR use. More specialized
databases that serve specialized communities can often be bet-
ter suited for detailed metadata sharing and can be contacted by
authors for advice. As more data management plans contain a
machine-readable requirement, direct collaboration with reposi-
tories becomes even more important.

All data published to sequence archives are data that have
had some primary analyses, including quality control, performed
on them. For next-generation sequence data, nearly all will have
been mapped to a reference genome sequence. Whole genome
shotgun sequence data will likely have been variant called and
will have at least a VCF file, in addition to the BAM file and the
mapped FASTQ file. RNA-seq and epigenetic datasets will have
been mapped and likely have quantified transcripts and peak
sizes, respectively. For example, DNA methylation data will often
supply only raw reads in FASTQ and differentially methylated re-
gions, the latter representing the final output of highly variable
and long pipelines. For the most part, the data that are being
stored and are filling up public repositories are the raw FASTQ
files. Due to the large sets of information and calculations needed
to examine all manner of “omics” data, computational methods
are employed for analyses. In some cases, the analyses require
the authors to write code, yet they often do not share the code
itself, diminishing the usefulness of the shared data.

For such datasets to be reused, scientists are required to not
only download the raw data but also reprocess them. This reanal-
ysis is likely to generate many identical pipeline intermediates
and final datasets that were created by the original analysis. Be-
ing able to demonstrate reproducibility in analysis is important
and too often proves impossible [90], but it is equally important
that the datasets achieve their full utility potential through reuse
for novel purposes [91]. The processes that are performed to an-
alyze the raw data are often beyond the computational resources
and skills available to most researchers who could benefit from
them. Therefore, it is vital that detailed computational experi-
mental methods used in the study (i.e., scripts) are made available
alongside the publication, for example, on GitHub. It may be use-
ful to make processed data, such as transcriptome and genome
sequence assemblies, genomic variants, and peaks identified us-
ing technologies like chromatin immunoprecipitation sequenc-
ing (ChIP-seq), available along with the underlying reads when-

Data Reuse opportunites & challengesin Ag. | 7

ever possible. However, storing intermediates and final products
of pipelines comes at the cost of increasing the amount of nec-
essary disk space, an important trade-off to consider. A possible
short-term solution to this bottleneck to reuse is to make all code
used in the computational analysis available alongside raw and/or
processed datasets.

Sustainably storing ever-growing datasets is a current and
growing challenge. Disk space and electric power consumption
will continue to rise as database sizes increase and data reuse be-
comes more popular at research institutes and companies. There
is a recent trend to move analyses to the data instead of moving
the data, for example, through cloud computing [92]. Given the ex-
plosion in dataset sizes, this seems like a logical step to take, since
many large datasets are already available within a cloud environ-
ment. However, this harbors the risk that datasets will be effec-
tively locked behind paywalls, as users would be required to pay
for the computational resources. Once fully established, such a
system could lead to expensive charges beyond the costs of main-
taining the cloud infrastructure. It would be important to have a
publicly funded infrastructure or to ensure sufficient competition
between several providers. Efforts for establishing more sustain-
able funding of biodata resources are already underway (e.g., the
Global Biodata Coalition [93]), as are community recommenda-
tions for sustainable database management [94].

As citations of scientific publications are considered the cur-
rency of science, citations of datasets could acquire similar im-
portance [95]. Open Science Framework [96] provides scientists
with options to easily share datasets that are citable and search-
able through Digital Object Identifiers (DOIs). The benefits asso-
ciated with the publication of paper preprints extend to datasets
mentioned in them, enabling instant dissemination and citation
of DOIs. A cultural shift or requirement is needed in the long term
to ensure that dataset identifiers are included in the main text of
publications, enabling automatic readers to discover them. Addi-
tionally, automated literature tracking solutions could credit the
impact of a dataset by tracking whenever this dataset is men-
tioned in a subsequent publication (e.g., DataCite [97]). For meta-
analyses that contain large numbers of datasets that cannot all
be mentioned in text, it would be necessary to develop an auto-
matic screen that searches all supplementary files for mentioned
DOIs. Such a screen could be extended to patents to analyze the
commercial relevance of datasets.

Rewards for well-documented data submissions could be a
strategy to further improve the quality and quantity of publicly
available datasets [98]. Among them could be an evaluation crite-
rion for research proposals of data an investigator has shared in
accordance with data-sharing plans in previously funded research
projects. Researchers spend substantial amounts of time and re-
sources on generating and submitting datasets. This could be re-
warded by tracking the number of studies reusing these datasets,
as attempted by the Omics Discovery Index (OmicsDI) [99]. Fund-
ing agencies, universities, and companies would need to make hir-
ing decisions based on this criterion, similarly to how they already
do with publication citations. As this would be a rearward-facing
statistic, it would likely come with the same biases and issues of
equity as citations of scientific publications, namely, self-citation,
gender, racial, and institutional bias [100], but may still incentivize
the generation of more reusable datasets.

Data ownership and sharing requirements

An important source of genetic material for research in plant
and animal genomics is samples from genetic lines derived from
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breeding companies that have current commercial value or intel-
lectual property. Often, arrangements to use such data for exper-
iments are important for omics analyses to be relevant to species
of agricultural importance. Breeding companies often have large
populations with excellent metadata and can provide samples at
little to no additional cost. However, these companies need to pro-
tect their investments in intellectual property and often prohibit
researchers from making their sequence or omics data public (e.g.,
a recent dispute over intellectual property rights for improved
seeds [101]). Unfortunately, this is a major barrier to reusing rele-
vant agricultural data.

There is a challenge in having access to relevant, affordable
study populations from breeding companies that can also be
shared publicly as sequence or genotype data. The extent of shar-
ing is also unknown as a reliable assessment of the economic im-
portance of datasets would be difficult to achieve because most
companies could not permit an analysis of internal data reuse to
protect their intellectual property. Enabling a self-reporting sys-
tem could be an approach to gain insights into data reuse within
companies, in addition to the dataset citation reward system men-
tioned in the previous section. Finding common ground in pre-
competitive research spaces and ways to leverage industry data
for scientific discovery, while protecting intellectual property, will
help facilitate the reuse of some industry data.

Maintaining the competitive value of industry data is impor-
tant; thus, there is a need to develop novel data-sharing solutions
that protect intellectual property but facilitate more data shar-
ing. Several methods have been proposed to overcome this prob-
lem, including homomorphic/monomorphic encryption and fed-
erated learning methods [102-105]. The inability to share industry
data inhibits publication in an increasing number of journals. Ad-
ditionally, it also threatens to reduce public-private research part-
nerships funded by the US government as pending regulations will
require all data funded by federal grants to be made public tenta-
tively sometime in 2026 [106].

Agricultural industry datasets provide value to both the public
and private sectors and importantly facilitate innovative training
of graduate students. The ability to reuse industry data impacts
graduate student training since students are required to produce
publications and demonstrate competency based on their exper-
tise. Reduced access to industry data will diminish training sought
by industry to work with industry-relevant data. Thus, challenges
related to data reuse of industry data have a broad impact.

Another consideration is data generated from biological re-
sources that are maintained by specific cultural groups (discussed
below in “The importance and benefits of equity and inclusion”).
Landraces, traditional crops, and crop wild relatives contain valu-
able genetic variation. There are weak systems in place to guar-
antee the engagement of these communities when their data are
used and reused [107, 108]. The human genomics community has
experience in data privacy to maintain Health Insurance Portabil-
ity and Accountability Act compliance to ensure health care data
remain both private and portable. The use of data management,
sharing, and processing tools developed for medical systems may
help overcome some of these challenges in agriculture.

There already exist numerous federal grant data-sharing re-
quirements. Genetic sequence data are an increasingly important
consideration in policy regarding agricultural intellectual prop-
erty rights and conservation (e.g., The Nagoya Protocol [109], Inter-
national Treaty on Plant Genetic Resources for Food and Agricul-
ture [110], African BioGenome Project [111]). The upcoming 2026
mandate to make research funded by the US government pub-
licly available [106] will undoubtedly alter the landscape of data

sharing and ownership further. When it comes to future publicly
funded research, we believe that partnerships between public and
private entities should prioritize collective benefits to ensure that
the rewards of data reuse are reaped equitably.

Resource availability and user skill level

Concerning high-throughput sequence data, the data that are
stored are typically unprocessed sequence datasets in FASTQ for-
mat. For most genetic or genomic studies, this format is the start-
ing point for any analytical pipeline. The bioinformatics skills and
computational resources required to store and transform FASTQ
data into, for example, quantified expression levels, variants, or
genotypes, exist in most larger research institutes. Therefore, we
believe that many issues of data storage and computational re-
source availability are not the limiting factors in most US-based
academic and government institutions any longer (which could be
said a decade ago) (Fig. 2A, C, D). However, worldwide, many agri-
cultural researchers and institutions do not have ready access to
these resources. This constitutes a barrier to the reuse of these
data, which, for many, is insurmountable, constituting a major
challenge to equity and inclusion in the future of data reuse.

Additionally, user skill level, awareness of resources, and time
investment into data management are likely inhibiting a lot of
productive reuses and limiting how many resources are being
made available for future reuse (Fig. 2D). A recent study [20] shows
that, at least anecdotally, skill or perceived ability was identified
by many participants as a major factor influencing reuse behav-
ior. Methods of data storage, sharing, and management were iden-
tified across all science sectors and types of research activities,
with most respondents to a 2017-2018 global survey of scientists
exhibiting “high and mediocre risk data practices,” for example,
storing data on USB drives [18]. That same survey found that at-
titudes toward data reuse were mostly positive but that practice
does not always support data storage, sharing, and future reuse
[18]. Investment into data literacy early in science education will
address these issues in future generations of researchers [112].
We agree with Tenopir et al. [18], namely, that “programs for both
awareness and to help engender good data practices are clearly
needed.” Further, data reuse can be incentivized using award sys-
tems for successful reuse cases, for example, the DataWorks! Prize
[113] or The Research Parasite Award [114].

The Importance and Benefits of Equity and
Inclusion

The introduction of Big Data in agriculture has provided tremen-
dous opportunities for advancements [115]. Equity considera-
tions are essential to ensure that the benefits of agricultural data
reuse are shared equitably among diverse stakeholders, including
marginalized communities and vulnerable populations [116].

The reuse of data can improve equity and inclusion by reduc-
ing costs and increasing dataset utility. Nonetheless, the reuse of
data requires computational capacity, Internet access, digital lit-
eracy, and proficiency in dominant languages. Despite significant
global disparities, nations are formulating policies and expanding
infrastructure to reach remote, rural, and periurban communities.
The percentage of people with Internet access has been steadily
increasing, although each locality has its own unique needs. The
Internet plays a pivotal role in bridging the gap to access a wealth
of information.

The knowledge disparities can be narrowed by employing data
visualization techniques and providing commentaries, detailed
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Figure 4: Data reuse can facilitate a positive feedback loop between
striving for diversity, equity, and inclusion and the benefits of big data in
agricultural research. This may include capturing more diverse and
creative solutions to problems and diversifying the agricultural
genomics community.

explanations, glossaries, and links to both basic and complex in-
formation. Data visualization, defined as “information which has
been abstracted in some schematic form, including attributes or
variables for the units of information,” plays a pivotal role in
assisting non-data scientists in comprehending and effectively
reusing data [117]. In contemporary data science, professionals
are increasingly incorporating advanced technologies into data vi-
sualization, including algorithms, human perception, animation,
and the development of computer graphics and software. These
innovations enable the discovery of valuable insights within vast
datasets [118].

Documentation of data is essential for facilitating reuse, and
it is crucial to link the outcomes of data reuse with contextual
information. Scientists require technical details regarding equip-
ment and data procedures, maintenance of data formats, ontolo-
gles, and metadata within a specific field [119]. However, individ-
uals with varying levels of knowledge disparity often need access
to more information. To address this need, databases and reposi-
tories for reused data should be linked with institutional science
communication websites, providing comprehensive explanations
of fundamental concepts.

Equally, as numerous studies have shown, diversity breeds in-
novation [120] (Fig. 4). Thus, to harness the full power of a data-
driven future in agriculture, the omics community needs to wres-
tle with the question of whether biases present in research ci-
tation patterns (prestige of the authors being cited, their gender,
race, and nationality [100]) are transferred to datasets that are se-
lected for reuse.

It is also vital we adhere to and enforce the CARE (Collective
Benefit, Authority to Control, Responsibility, and Ethics) princi-
ples for Indigenous data governance [121] of existing and future
datasets. As Carroll et al. [121] note, we must acknowledge that
many publicly available and reused datasets already use Indige-
nous resources and traditional knowledge. A great resource for
data sovereignty-enhancing research is the Local Contexts initia-
tive [122], providing “a digital infrastructure for community gover-
nance of Indigenous data.” Our recommendation to the commu-
nity is to engage with Indigenous communities, practice respon-
sible data stewardship, and use Indigenous ethics to determine
data access [123]. This includes the use of appropriate digitaliden-
tiflers and inquiry into and respect for ownership rights. Tradi-

tional Knowledge Labels “improve the quality of provenance, en-
courage communities to enrich records with their own traditional
knowledge, and increase capacity for better understanding of eg-
uity and decision-making regarding re-use and circulation” [123].
The provenance of any biocultural samples, collections, datasets,
and traditional knowledge should be noted in full in metadata.

Although limited research has been conducted on access to
agricultural omics benefits [116], we can learn from ethics frame-
works for health and biomedical data, which can be adapted to the
agricultural domain [124]. For example, Tiffin et al. [125] empha-
size the need for data governance that protects vulnerable pop-
ulations, especially in low-income and middle-income countries,
when utilizing digital health data. Further, Mott et al. [104] dis-
cuss the use of homomorphic encryption for secure data sharing,
which can facilitate the inclusion of private or sensitive data with-
out compromising data confidentiality. This technology could be
a key enabler in making data sharing more inclusive, especially
when dealing with sensitive information from Indigenous com-
munities, as highlighted by Carroll et al. [123]

On the heels of many studies quantifying discrimination in
academia [94], the big data community has a unique opportu-
nity to build a field of research with fewer biases. Efforts should
be directed toward creating centralized repositories that host di-
verse agricultural datasets, making it easier for researchers to lo-
cate and access relevant information. Addressing issues related
to data ownership and equitable access is vital if we are to reap
all the benefits of data reuse as a global genomics community.

Here, we have assessed challenges to reusing sequence-based
agricultural datasets and presented possible future solutions re-
garding (meta)data availability, ownership, user resources, and
equity. There is a growing demand for the reuse of pub-
lished datasets and reinforcing the importance of well-structured
databases to increase these numbers in the future. A change in
global research culture that emphasizes the “R” for reuse in FAIR
would cause significant increases in data submissions, accompa-
nied by more frequent reuse.

One of the biggest challenges of data reuse is to establish and
enforce (meta)data standards and sharing requirements. Defined
data standards and recommendations would address the issues of
data quality, availability, sparsity of metadata, and formatting in
the agricultural genomics field. The number of omics datasets is
increasing every year, and to keep the data well organized, follow-
ing some standards can be helpful to enable reproducibility, with
the added benefit of being good scientific practice. Other tradi-
tional knowledge management domains such as libraries, specif-
ically data librarians, may ultimately guide the creation of orga-
nizational standards. Maintaining these standards, as well as de-
tailing important information that was cited throughout this ar-
ticle, may facilitate the reuse of omics data for future analysis. It
may also aid in bringing all areas of agricultural research on equal
footing when it comes to the benefits of open science [126]. This
will benefit future scientists and developers of applications and
databases, contributing to science.

To aid in establishing best practices in the agricultural data
field, we have compiled recommendations in a GitHub page [127],
which we aim to keep updated with discussion points resulting
from the AgBioData working group on data reuse. We invite any
interested party to contribute to this community resource.

The focus of this (over)view of the status of data reuse in agri-
cultural research has been sequence-based datasets. However,
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we acknowledge that many challenges and opportunities asso-
ciated with these types of biological data are shared with non-
sequence-based datasets. Indeed, these diverse data types come
with their own unique set of challenges and rewards of reuse.
Examples of these datasets include, and are not limited to, phe-
nomes, metabolomes, proteomes, interactomes, enviromes, mi-
crobiomes, lipidomes, and glycomes. Additionally, many analyses
include geographic, climate, and ecological data, which must also
be considered for reuse purposes. Advances in artificial intelli-
gence promise to allow for more knowledge to be gleaned from
large, shared, interdisciplinary datasets. The omics revolution is
still ongoing, and we must keep emerging data types in mind when
considering reuse standards and platforms. It will be important to
consider how such data types can be integrated with sequence-
based data for future applications, further emphasizing the im-
portance of complete metadata and biosample information cur-
rently deposited in databases. We, in the AgBioData DRWG, be-
lieve the future of data reuse is bright as more datasets are reused
successfully, contributing to the sustainability of agricultural re-
search in the omics era.

Conclusions

Data reuse is beginning to yield exciting science across disciplines.
Harnessing the power of large agricultural omics projects, like
FarmGTEx [31] and Rice3K [32], has demonstrated the detailed
knowledge that can be obtained from reuse. As many barriers to
reuse keep falling, the biggest obstacle may continue to be the la-
bor investment needed from the data producer (e.g., submitting
data to repositories) and reuser (e.g., often convoluted process of
obtaining data). Establishing more standards across data produc-
tion, management, and sharing would pave the way to lowering
the barrier of entry to the benefits of reuse. Many data produc-
ers are sharing their data, but there is a need for more incentives
to encourage true FAIR compliance to facilitate reuse. Researcher
skill level, one of the major barriers to reuse, needs to be bolstered
with guidance and training programs, ensuring equity across all
stakeholders in the global agricultural community. In addition, to
ensure the maintenance of data availability, it is imperative that
the scientific community continues to invest in data management
infrastructure and resources. The future of data reuse will also
benefit from the development of user-friendly tools and platforms
that facilitate data discovery, access, and analysis.

The benefits are clear; data reuse facilitates the ability to ask
big questions and provides community resources about genomes
and phenomes that one group alone cannot achieve. As more
funding agencies are promoting data reuse, more scientists will
see the exciting opportunities to solve grand challenges in biology.
The next big breakthrough in predictive biology will likely require
the integration of many diverse datasets. The future of data reuse
in agriculture hinges on a collective commitment to data manage-
ment, standards, infrastructure development, and collaboration
between researchers. The open science principles are necessary
to improve innovative research and sustainable agricultural prac-
tices. The data are out there to reuse; it is time to develop your in-
novative idea and run with the exciting datasets that are already
available. The sky’s the limit!
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